, Collection and Pore Filling in Solid-State Dye-Sensitized Solar Cells, Nanotechnology, p.19, 2008.

L. Xu, L. L. Deng, J. Cao, X. Wang, W. Y. Chen et al., )2Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells, Z. Solution-Processed Cu, p.12, 2017.

Y. S. Kwon, J. Lim, H. Yun, Y. Kim, and T. Park, A Diketopyrrolopyrrole-Containing Hole Transporting Conjugated Polymer for Use in Efficient Stable Organic-inorganic Hybrid Solar Cells Based on a Perovskite, Energy Environ. Sci, vol.7, p.1454, 2014.

B. Xu, Advanced Organic Hole Transport Materials for Solution-Processed Photovoltaic Devices Bo Xu, 2015.

Z. Hawash, L. K. Ono, S. R. Raga, and M. Lee,

Y. Qi, Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films, Chem. Mater, vol.27, pp.562-569, 2015.

P. Dhingra, P. Singh, P. J. Rana, A. Garg, and P. Kar, Hole-Transporting Materials for PerovskiteSensitized Solar Cells, Energy Technol, vol.4, pp.891-938, 2016.

G. De-la-torre, C. G. Claessens, and T. Torres, Phthalocyanines: Old Dyes, New Materials. Putting Color in Nanotechnology, Chem. Commun, 2000.

C. G. Claessens, U. Hahn, and T. Torres, Phthalocyanines: From Outstanding Electronic Properties to Emerging Applications, Chem. Rec, vol.8, pp.75-97, 2008.

J. Mack and N. Kobayashi, Low Symmetry Phthalocyanines and Their Analogues, Chem. Rev, vol.111, pp.281-321, 2011.

Y. Zhang, S. Paek, M. Urbani, M. Medel, I. Zimmermann et al., Unsymmetrical and Symmetrical Zn(II) Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells, ACS Appl. Energy Mater, vol.1, pp.2399-2404, 2018.

M. G. Walter, A. B. Rudine, and C. C. Wamser, Porphyrins and Phthalocyanines in Solar Photovoltaic Cells, J. Porphyr. Phthalocyanines, vol.14, pp.759-792, 2010.

G. Sfyri, C. V. Kumar, Y. L. Wang, Z. X. Xu, C. A. Krontiras et al., Tetra Methyl Substituted Cu(II) Phthalocyanine as Alternative Hole Transporting Material for Organometal Halide Perovskite Solar Cells, Appl. Surf. Sci, vol.360, pp.767-771, 2016.

V. Kumar, C. Sfyri, and G. , Dimitrios Raptis, ab; Elias Stathatos, ac; Lianos, P. Perovskite Solar Cell with Low Cost Cu-Phthalocyanine as Hole Transporting Material, p.5, 2014.

F. J. Ramos, M. Ince, M. Urbani, A. Abate, M. Grätzel et al., Non-Aggregated Zn(II)Octa(2,6-Diphenylphenoxy) Phthalocyanine as a Hole Transporting Material for Efficient Perovskite Solar Cells, Dalt. Trans, p.44, 2015.

W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang et al., Efficient Fully-VacuumProcessed Perovskite Solar Cells Using Copper Phthalocyanine as Hole Selective Layers, J. Mater. Chem. A, vol.3, pp.23888-23894, 2015.

G. Sfyri, C. V. Kumar, G. Sabapathi, L. Giribabu, K. S. Andrikopoulos et al., Subphthalocyanine as Hole Transporting Material for Perovskite Solar Cells, 2015.

M. Urbani, M. Grätzel, M. K. Nazeeruddin, and T. Torres, Meso-Substituted Porphyrins for DyeSensitized Solar Cells, Chem. Rev, vol.114, pp.12330-12396, 2014.

H. Jiang, Organic Ambipolar Conjugated Molecules for Electronics: Synthesis and StructureProperty Relationships, Macromol. Rapid Commun, vol.31, pp.2007-2034, 2010.

T. Sagawa, S. Yoshikawa, and H. Imahori, One-Dimensional Nanostructured Semiconducting Materials for Organic Photovoltaics, J. Phys. Chem. Lett, vol.1, pp.1020-1025, 2010.

P. M. Beaujuge and J. M. Fréchet, Molecular Design and Ordering Effects in ?-Functional Materials for Transistor and Solar Cell Applications, J. Am. Chem. Soc, vol.133, 2011.

H. Imahori and T. Umeyama, Donor-Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion, J. Phys. Chem. C, vol.113, pp.9029-9039, 2009.

F. Bure?, Fundamental Aspects of Property Tuning in Push-pull Molecules, RSC Adv, vol.4, pp.58826-58851, 2014.

Y. Shirota and H. Kageyama, Charge Carrier Transporting Molecular Materials and Their Applications in Devices Charge Carrier Transporting Molecular Materials and Their Applications in Devices, Chem. Rev, vol.107, pp.953-1010, 2007.

P. Dhingra, P. Singh, P. J. Rana, A. Garg, and P. Kar, Hole-Transporting Materials for PerovskiteSensitized Solar Cells, Energy Technol, vol.4, pp.891-938, 2016.

A. Slama-schwok, M. Blanchard-desce, and J. M. Lehn, Intramolecular Charge Transfer in DonorAcceptor Molecules, J. Phys. Chem, vol.94, pp.3894-3902, 1990.

T. Jia, C. Sun, R. Xu, Z. Chen, Q. Yin et al.,

Y. C. Huang, Naphthalene Diimide Based N-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells, ACS Appl. Mater. Interfaces, vol.9, pp.36070-36081, 2017.

A. Butler-ricks, G. C. Solomon, M. T. Colvin, A. M. Scott, K. Chen et al.,

M. R. Ratner, Controlling Electron Transfer in Donor-Bridge-Acceptor Molecules Using Cross-Conjugated Bridges, J. Am. Chem. Soc, vol.132, pp.15427-15434, 2010.

Y. S. Kwon, J. Lim, H. Yun, Y. Kim, and T. Park, A Diketopyrrolopyrrole-Containing Hole Transporting Conjugated Polymer for Use in Efficient Stable Organic-inorganic Hybrid Solar Cells Based on a Perovskite, Energy Environ. Sci, vol.7, p.1454, 2014.

S. Qu and H. Tian, Diketopyrrolopyrrole (DPP)-Based Materials for Organic Photovoltaics, Chem. Commun, vol.48, p.3039, 2012.

H. Cheng, X. Zhao, Y. Shen, M. Wang, L. Wang et al.,

C. Diketopyrrolopyrrole, Based D-?-A-?-D Type Small Organic Molecules as Hole Transporting Materials for Perovskite Solar Cells, J. Energy Chem, vol.27, pp.1175-1182, 2017.

C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge et al., Synthetic Control of Structural Order in N -Alkylthieno[3,4-c ]Pyrrole-4,6-DioneBased Polymers for Efficient Solar Cells, J. Am. Chem. Soc, vol.132, pp.7595-7597, 2010.

X. Guo, R. P. Ortiz, Y. Zheng, M. Kim, S. Zhang et al., Pyrrole-4,6-Dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic ThinFilm Transistors, J. Am. Chem. Soc, vol.133, pp.13685-13697, 2011.

J. Chen, T. L. Chen, B. Kim, D. A. Poulsen, J. L. Mynar et al., Quinacridone-Based Molecular Donors for Solution Processed BulkHeterojunction Organic Solar Cells, ACS Appl. Mater. Interfaces, vol.2, pp.2679-2686, 2010.

J. Brebels, C. C. Karine, M. Klider, P. Kelchtermans, M. Verstappen et al., Low Bandgap Polymers Based on Bay-Annulated Indigo for Organic Photovoltaics: Enhanced Sustainability in Material Design and Solar Cell Fabrication, Org. Electron. physics, Mater. Appl, vol.50, pp.264-272, 2017.

P. Nikolov, I. Petkova, G. Köhler, and S. Stojanov, Deactivation Processes and Hydrogen Bonding of Excited N-Substituted Acridones, J. Mol. Struct, vol.448, pp.247-254, 1998.

H. T. Nguyen, M. C. Lallemand, S. Boutefnouchet, S. Michel, and F. Tillequin, Antitumor Psoropermum Xanthones and Sarcomelicope Acridones: Privileged Structures Implied in DNA Alkylation, J. Nat. Prod, vol.72, pp.527-539, 2009.

P. Singh, J. Kaur, P. Kaur, and S. Kaur, Search for MDR Modulators: Design, Syntheses and Evaluations of N-Substituted Acridones for Interactions with p-Glycoprotein and Mg2+, Bioorganic Med. Chem, vol.17, pp.2423-2427, 2009.

J. A. Smith, R. M. West, and M. Allen, Acridones and Quinacridones: Novel Fluorophores for Fluorescence Lifetime Studies, J. Fluoresc, vol.14, pp.151-171, 2004.

H. Miyaji and J. L. Sessler, Off-the-Shelf Colorimetric Anion Sensors. Angew. Chemie -Int, vol.40, pp.154-157, 2001.

C. Yang, K. Shi, T. Lei, J. Wang, X. Wang et al., Epindolidione-Based Conjugated Polymers: Synthesis, Electronic Structures, and Charge Transport Properties, ACS Appl. Mater. Interfaces, vol.8, pp.3714-3718, 2016.

E. Daniel-g?owacki and G. Romanazzi,

G. Monkowius, M. Voss, R. T. Burian, N. Lechner, . Demitri et al.,

. Redhammer, G. P. Sünger, and S. S. , Epindolidiones-Versatile and Stable HydrogenBonded Pigments for Organic Field-Effect Transistors and Light-Emitting Diodes, Adv. Funct. Mater, vol.25, pp.776-787, 2015.

C. Wang, S. Chen, K. Wang, S. Zhao, J. Zhang et al.,

, Luminescent Dendrimers Composed of Quinacridone Core and Carbazole Dendrons: Structure, Electrochemical, and Photophysical Properties, J. Phys. Chem. C, vol.116, pp.17796-17806, 2012.

C. Wang, S. Wang, W. Chen, Z. Zhang, H. Z. et al.,

. Diphenylamino, Substituted Quinacridone Derivative: Red Fluorescence Based on Intramolecular Charge-Transfer Transition, RSC Adv, vol.6, pp.19308-19313, 2016.

W. Chen, S. Wang, G. Yang, S. Chen, K. Ye et al., Dicyanomethylenated Acridone Based Crystals: Torsional Vibration Confinement Induced Emission with Supramolecular Structure Dependent and Stimuli Responsive Characteristics, J. Phys. Chem. C, vol.120, pp.587-597, 2016.

J. P. Dheyongera, W. J. Geldenhuys, T. G. Dekker, . Van-der, C. J. Schyf et al., Biological Evaluation, and Molecular Modeling of Novel Thioacridone Derivatives Related to the Anticancer Alkaloid Acronycine, Bioorganic Med. Chem, vol.13, pp.689-698, 2005.

N. Bahr, E. Tierney, and J. L. Reymond, Highly Photoresistant Chemosensors Using Acridone as Fluorescent Label, Tetrahedron Lett, vol.38, pp.1489-1492, 1997.

V. Nadaraj, S. Thamarai-selvi, and S. Mohan, Microwave-Induced Synthesis and Anti-Microbial Activities of 7,10,11,12-Tetrahydrobenzo[c]Acridin-8(9H)-One Derivatives, Eur. J. Med. Chem, vol.44, pp.976-980, 2009.

W. Chow, G. Zhou, and W. Wong, Electron-Deficient Acridone Derivatives as a New Functional Core Towards Low-Bandgap Metallopolyynes, Macromol. Chem. Phys, vol.208, pp.1129-1136, 2007.

D. Vezzu, K. Deaton, J. C. Shayeghi, M. Li, Y. Huo et al., Acridinone / Amine ( Carbazole ) -Based Bipolar Molecules : Efficient Hosts for Emitters, pp.8-11, 2009.

D. Lumpi, B. Holzer, J. Bintinger, E. Horkel, S. Waid et al.,

M. Wanzenbock, D. Marchetti-deschmann, E. Christian-hametner, I. K. Bertagnolli, and J. F. , Substituted Triphenylamines as Building Blocks for Star Shaped Organic Electronic Materials, New J. Chem, vol.39, pp.1840-1851, 2015.

Z. Wan, C. Jia, L. Zhou, W. Huo, X. Yao et al., Influence of Different Arylamine Electron Donors in Organic Sensitizers for Dye-Sensitized Solar Cells, Dye. Pigment, vol.95, pp.41-46, 2012.

Z. Guo, W. Zhu, and H. Tian, Dicyanomethylene-4H-Pyran Chromophores for OLED Emitters, Logic Gates and Optical Chemosensors, Chem. Commun, vol.48, pp.6073-6084, 2012.

B. K. Sharma, A. M. Shaikh, N. Agarwal, and R. M. Kamble, Synthesis, Photophysical and Electrochemical Studies of Acridone-Amine Based Donor-acceptors for Hole Transport Materials, RSC Adv, vol.6, pp.17129-17137, 2016.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

C. Hua, A. Rawal, T. B. Faust, P. D. Southon, R. Babarao et al., Exploiting Stable Radical States for Multifunctional Properties in Triarylamine-Based Porous Organic Polymers, J. Mater. Chem. A, vol.4, pp.1166-1169, 2010.

R. J. Bushby, D. Gooding, and M. T. , High-Spin p-Doped Arylamine Polymers

, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst, vol.334, pp.167-176, 1999.

R. J. Bushby, D. Gooding, and M. E. Vale, High-Spin Polymeric Arylamines, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.357, pp.2939-2957, 1999.

H. Kim, S. H. Im, N. Park, and . Organolead-halide-perovskite, New Horizons in Solar Cell Research

, J. Phys. Chem. C, vol.118, pp.5615-5625, 2014.

K. Jung, J. Lee, J. Kim, W. S. Chae, and M. J. Lee, Solution-Processed Flexible Planar Perovskite Solar Cells: A Strategy to Enhance Efficiency by Controlling the ZnO Electron Transfer Layer, PbI2phase, and CH3NH3PbI3morphologies, J. Power Sources, vol.324, pp.142-149, 2016.

W. Taame-abraha-berhe, C. Su, C. Chen, J. Pan, H. Cheng et al., Organometal Halide Perovskite Solar Cells: Degradation and Stability, Energy Environ. Sci, vol.9, pp.323-356, 2016.

B. Chen, M. Yang, S. Priya, and K. Zhu, Origin of J-V Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett, vol.7, pp.905-917, 2016.

S. Ameen and M. K. Nazeeruddin, Perovskite Solar Cells: Influence of Hole Transporting Materials on R. Thioxanthone Derivatives as Stabilizers against Electrical Breakdown in Cross-Linked Polyethylene for High Voltage Cable Applications, Polym. Degrad. Stab, vol.112, pp.63-69, 2015.

R. Nazir, E. Bal?iunas, D. Buczy?ska, F. Bourquard, D. Kowalska et al., Donor-Acceptor Type Thioxanthones: Synthesis, Optical Properties, and Two-Photon Induced Polymerization, Macromolecules, vol.48, pp.2466-2472, 2015.

L. Cokbaglan, N. Arsu, Y. Yagci, S. Jockusch, and N. J. Turro, 2-Mercaptothioxanthone As a Novel Photoinitiator for Free Radical Polymerization, Macromolecules, vol.36, pp.2649-2653, 2003.

G. Neumann, M. ;. Gehlen, M. ;. Encinas, M. S. Allen, N. Corrales et al., Photophysics and Photoreactivity of Substituted Thioxanthones, J. Chem. Soc. Faraday Trans, vol.93, pp.1517-1521, 1997.

J. Fouassier and D. Ruhlmann, Relations Structure-Properties Dans Les Photoamorceurs de Polymerisation-7.Interactions Photosensibilisateur/Photoamorceurs Dans Des Milieux Photopolymerisables, Eur. Polym. J, vol.29, pp.505-512, 1993.

S. Ishijima, M. Higashi, and H. Yamaguchi, Magnetic Circular Dichroism and Circular Dichroism Spectra of Xanthones, J. Phys. Chem, vol.98, pp.10432-10435, 1994.

C. Ley, F. Morlet-savary, P. Jacques, and J. P. Fouassier, Solvent Dependence of the Intersystem Crossing Kinetics of Thioxanthone, Chem. Phys, vol.255, pp.335-346, 2000.

V. Rai-constapel, M. Kleinschmidt, S. Salzmann, L. Serrano-andrés, C. M. Marian et al., On the Shape of the First Absorption Band, Phys. Chem. Chem. Phys, vol.12, pp.9320-9327, 2010.

S. Ishijima, M. Higashi, H. Yamaguchi, M. Kubota, and T. K. , The Photoelectron Spectra of Xanthone, Thioxanthone, and Acridone, J. Electron Spectros. Relat. Phenomena, vol.82, pp.71-74, 1996.

R. Mundt, T. Villnow, C. T. Ziegenbein, P. Gilch, C. Marian et al., Thioxanthone in Apolar Solvents: Ultrafast Internal Conversion Precedes Fast Intersystem Crossing, Phys. Chem. Chem. Phys, vol.18, pp.6637-6647, 2016.

W. Green, Industrial Photoinitiators, 2010.

A. , E. S. Tsai, E. W. Throckmorton, L. Rajeshwar, K. Mckellar et al., J. Electroanal. Chem, vol.210, pp.45-67, 1986.

G. García, M. P. Fern, and M. Fern, Theoretical Study of the Effect of Alkyl and Alkoxy Lateral Chains on the Structural and Electronic Properties of ? -Conjugated Polymers, pp.0-8, 2010.

K. Rakstys, M. Saliba, P. Gao, P. Gratia, ;. et al., Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylidene-Based Hole-Transporting Material, Egidijus Kamarauskas, Sanghyun Paek, Vygintas Jankauskas, vol.55, pp.7464-7468, 2016.

F. G. Brunetti, X. Gong, M. Tong, A. J. Heeger, F. Wudl et al., Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics

. Angew, Chemie -Int, vol.49, pp.532-536, 2010.

H. Choi, K. Do, S. Park, J. S. Yu, and J. Ko, Efficient Hole Transporting Materials with Two or Four N,N-Di(4-Methoxyphenyl)Aminophenyl Arms on an Ethene Unit for Perovskite Solar Cells. Chem. -A Eur, J, vol.21, pp.15919-15923, 2015.

S. Kawata, J. Furudate, T. Kimura, H. Minaki, A. Saito et al., Controlling the Excited-State Energy Levels of 9,9?-Bifluorenylidene Derivatives by Twisting Their Structure to Attaining Singlet Fission Character in Organic Photovoltaics, J. Mater. Chem. C, vol.5, pp.4909-4914, 2017.

M. B. Smith and J. Michl, Singlet Fission, Chem. Rev, vol.110, pp.6891-6936, 2010.

T. Ozturk, E. Ertas, and O. Mert, Use of Lawesson's Reagent in Organic Syntheses, Chem. Rev, vol.107, pp.5210-5278, 2007.

R. A. Cherkasov, G. A. Kutyrev, and A. N. Pudovik, Organothiophosphorous Reagents in Organic Synthesis, Tetrahedron, vol.41, pp.2567-2624, 1985.

M. P. Cava and M. I. Levinson, Thionation Reactions of Lawesson's Reagents, Tetrahedron, vol.41, pp.5061-5087, 1985.

M. Lakshmikantham, M. V;-levinson, M. Menachery, M. P. Cava, and . Thioquinones, Generation of Dithioanthraquinone, J. Org. Chem, vol.51, pp.411-412, 1986.

R. Shabana, L. S. Boulos, and Y. M. Shaker, The Reaction of Lawesson's Reagent with Trihydroxy Compounds, Heteroat. Chem, vol.10, pp.1-6, 1999.

M. K. Ter-wiel, J. Vicario, S. G. Davey, A. Meetsma, and B. L. Feringa, New Procedure for the Preparation of Highly Sterically Hindered Alkenes Using a Hypervalent Iodine Reagent, Org. Biomol. Chem, p.28, 2005.

M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini et al.,

D. Angelis, A. Abate, A. Hagfeldt, G. Poz, M. G. et al., A Molecularly Engineered Hole-Transporting Material for Efficient Perovskite Solar Cells, Nat. Energy, 2016.

M. Degbia, M. Ben-manaa, B. Schmaltz, N. , N. Berton et al., Carbazole-Based Hole Transporting Material for Solid State Dye-Sensitized Solar Cells: Influence of the Purification Methods, Mater. Sci. Semicond. Process, vol.43, pp.90-95, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01246216

Ö. Usluer, M. Abbas, G. Wantz, and L. Vignau,

C. Grana, E. Brochon, and G. H. Cloutet, Metal Residues in Semiconducting Polymers: Impact on the Performance of Organic Electronic Devices, ACS Macro Lett, vol.3, pp.1134-1138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01361414

J. E. Mcmurry, Carbonyl-Coupling Reactions Using Low-Valent Titanium, Chem. Rev, vol.89, pp.1513-1524, 1989.

J. E. Mc-murry, Organic Chemistry of Low-Valent Titanium, Acc. Chem. Res, vol.7, pp.281-286, 1974.

B. K. Czako, Stategic Applications of Named Reactions in Organic Synthesis, 2005.

J. E. Mcmurry, M. P. Fleming, K. L. Kees, and L. R. Krepski, Titanium-Induced Reductive Coupling of Carbonyls to Olefins, J. Org. Chem, vol.43, pp.3255-3266, 1978.

X. F. Duan, J. Zeng, J. W. Lü, Z. Zhang, and . Bin, Insights into the General and Efficient Cross McMurry Reactions between Ketones, J. Org. Chem, vol.71, pp.9873-9876, 2006.

C. Villiers and M. Ephritikhine, New Insights into the Mechanism of the McMurry Reaction, Angew. Chem. Int. Ed. Engl, vol.36, pp.2380-2382, 1997.

A. Furstner, Active Metals: Preparation, Characterization and Applications

M. Edmonds and A. Abell, Modern Carbonyl Olefination, 2004.

A. Furstner, The McMurry Reaction and Related Transformations. In Transition metals for organic synthesis, pp.381-401, 1998.

Y. Shirota, Photo-and Electroactive Amorphous Molecular Materials-molecular Design, Syntheses, Reactions, Properties, and Applications, J. Mater. Chem, vol.15, pp.75-93, 2005.

H. Kageyama, H. Ohishi, M. Tanaka, Y. O. , and Y. S. , High-Performance Organic Photovoltaic Devices Using a New Amorphous Molecular Material with High Hole Drift Mobility, Tris[4-(5-Phenylthiophen-2-Yl)Phenyl]Amine, IEEE, vol.16, pp.1528-1536, 2010.

D. A. Brownson and C. E. Banks, The Handbook of Graphene Electrochemistry, 2014.

Y. Cohen, J. Klein, and M. Rabinovitz, Stable Polycyclic Anions: Dianions from Overcrowded Ethylenes, J. Chem. Soc. Chem. Commun, pp.1071-1073, 1986.

S. Pogodin and I. Agranat, Overcrowding Motifs in Large PAHs. An Ab Initio Study, J. Org. Chem, vol.67, pp.265-270, 2002.

. Mhz, CDCl 3 ) ? 7.93 (d, J = 2.5 Hz, 1H), 7.42 (d, J = 5 Hz, 2H), 7.15 (s, 1H), vol.7

H. Nmr,

. Mhz, DMSO-d 6 ) ? 7.7 (d, J = 5 Hz, 1H), 7.28 (d, J = 5Hz, 2H), vol.7

1. Hz, 71 (s, 6H), 1.63-1.42 (m, 2H), vol.3

H. Nmr,

. Mhz, CDCl 3 ) ? 8.25 (s, 1H), 7.35 (d, J = 7.5 Hz, 2H), vol.7

H. Nmr,

. Mhz, CDCl 3 ) ? 8.18 (s, 1H), 7.42 (s, 2H), 7.09 (d, J = 5 Hz, 4H), 7.03 (s, 1H), 6.93 (d, J = 5 Hz, 2H), vol.6

, Hz, 1H), 1.91 (t, J = 2.5 Hz, 2H), 1.73 (t, J = 5 Hz, 1H)

, CDCl 3 ) 167.9

T. Zhu, D. Liu, K. Zhang, Y. Li, Z. Liu et al., Rational Design of Asymmetric Benzodithiophene Based Photovoltaic Polymers for Efficient Solar Cells, J. Mater. Chem. A, vol.6, pp.948-956, 2018.

W. Yi, S. Zhao, H. Sun, Y. Kan, J. Shi et al.,

W. , Isomers of Organic Semiconductors Based on Dithienothiophenes: The Effect of Sulphur Atoms Positions on the Intermolecular Interactions and Field-Effect Performances, J. Mater. Chem. C, vol.3, pp.10856-10861, 2015.

J. Roosa, A. Sippola, T. Hadipour, P. Kastinen, T. I. Vivo et al.,

, Carbazole-Based Small Molecule Electron Donors: Syntheses, Characterization, and Material Properties, Dye. Pigment, vol.150, pp.79-88, 2018.

Y. Adachi, Y. Ooyama, Y. Ren, X. Yin, F. Jäkle et al., Hybrid Conjugated Polymers with Alternating Dithienosilole or Dithienogermole and Tricoordinate Boron Units, Polym. Chem, vol.9, pp.291-299, 2018.

-. Hung, C. Lu, Y. Lu, H. Lee, L. Lin et al., New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells, Chem. Mater, vol.26, pp.4361-4367, 2014.

, Pyrrole Based, NIR Absorbing, Solution Processable, Small Molecule Donor for Efficient Bulk Heterojunction Solar Cells, Phys. Chem. Chem. Phys, vol.18, pp.32096-32106, 2016.

Z. Ning and H. Tian, Triarylamine: A Promising Core Unit for Efficient Photovoltaic Materials, Chem. Commun, pp.5483-5495, 2009.

J. Huang and H. Huang, Organic and Hybrid Solar Cells

J. Huang and H. Huang, , 2014.

X. Liu, H. Chen, and S. Tan, Overview of High-Efficiency Organic Photovoltaic Materials and Devices, Renew. Sustain. Energy Rev, vol.52, pp.1527-1538, 2015.

N. Kaur, M. Singh, D. Pathak, T. Wagner, and J. M. Nunzi, Organic Materials for Photovoltaic Applications: Review and Mechanism, Synth. Met, vol.190, pp.20-26, 2014.

C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Semiconducting ?-Conjugated Systems in FieldEffect Transistors: A Material Odyssey of Organic Electronics, Chem. Rev, vol.112, pp.2208-2267, 2012.

K. Takimiya, I. Osaka, and M. Nakano, ?-Building Blocks for Organic Electronics: Revaluation of "Inductive" and "Resonance" Effects of ?-Electron Deficient Units, Chem. Mater, vol.26, pp.587-593, 2014.

J. Wang, K. Liu, L. Ma, X. Zhan, and . Triarylamine, Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells, Chem. Rev, vol.116, pp.14675-14725, 2016.

L. Hongmei-qin, F. Li, S. Guo, J. Su, Y. C. Peng et al., SolutionProcessed Bulk Heterojunction Solar Cells Based on a Porphyrin Small Molecule with 7% Power Conversion Efficiency, Energy Environ. Sci, vol.7, pp.1397-1401, 2014.

A. B. Tamayo, B. Walker, *. Nguyen, T. Low-band, and . Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells, J. Phys. Chem. C, vol.112, pp.11545-11551, 2008.

H. Wang, F. Liu, L. Bu, J. Gao, C. Wang et al., The Role of Additive in Diketopyrrolopyrrole-Based Small Molecular Bulk Heterojunction Solar Cells, Adv. Mater, vol.25, pp.6519-6525, 2013.

R. C. Coffin, J. Peet, J. Rogers, and G. C. Bazan, Streamlined Microwave-Assisted Preparation of Narrow-Bandgap Conjugated Polymers for High-Performance Bulk Heterojunction Solar Cells, Nat. Chem, vol.1, pp.657-661, 2009.

S. H. Park, S. Anshumanroy, S. C. Beaupre, N. ;. Coates, J. S. Moon et al., Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%, Nat. Photonics, vol.3, pp.297-303, 2009.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair et al., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells, J. Am. Chem. Soc, vol.130, pp.732-742, 2008.

M. Wang, X. Hu, P. Liu, W. Li, X. Gong et al., Thiadiazole for High-Performance Polymer Solar Cells, J. Am. Chem. Soc, vol.133, pp.9638-9641, 2011.

E. Wang, Z. Ma, Z. Zhang, K. Vandewal, P. Henriksson et al., An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells, J. Am. Chem. Soc, vol.133, pp.14244-14247, 2011.

R. Stalder, J. Mei, K. R. Graham, L. A. Estrada, and J. R. Reynolds, Isoindigo, a Versatile ElectronDeficient Unit for High-Performance Organic Electronics, Chem. Mater, vol.26, pp.664-678, 2014.

R. Stalder, J. Mei, and J. R. Reynolds, Isoindigo-Based Donor-Acceptor Conjugated Polymers, Macromolecules, vol.43, pp.8348-8352, 2010.

A. Wade, Z. R. Braunecker, A. Owczarczyk, N. Garcia, R. E. Kopidakis et al., Benzodithiophene and Imide-Based Copolymers for Photovoltaic Applications, Chem. Mater, vol.24, pp.1346-1356, 2012.

J. D. Douglas, G. Griffini, T. W. Holcombe, E. P. Young, O. P. Lee et al., Functionalized Isothianaphthene Monomers That Promote Quinoidal Character in Donor-Acceptor Copolymers for Organic Photovoltaics, Macromolecules, vol.45, pp.4069-4074, 2012.

X. Guo, R. P. Ortiz, Y. Zheng, Y. Hu, Y. Noh et al., Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structure-Property Correlations, Charge Carrier Polarity, and Device Stability, J. Am. Chem. Soc, vol.133, pp.1405-1418, 2011.

J. Hou, M. Park, S. Zhang, Y. Yao, L. Chen et al., Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo, Dithiophene. Macromolecules, pp.6012-6018, 2008.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang et al., Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells, Adv. Mater, vol.24, pp.2242-2248, 2012.

M. Pomerantz, Planar 2,2?-Bithiophenes with 3,3?-and 3,3?,4,4?-Substituents. A Computational Study, Tetrahedron Lett, vol.44, pp.1563-1565, 2003.

P. Berrouard, F. Grenier, J. Pouliot, E. Gagnon, C. Tessier et al.,

L. , Synthesis and Characterization of 5-Octylthieno[3,4-c ]Pyrrole-4,6-Dione Derivatives as New Monomers for Conjugated Copolymers, Org. Lett, vol.13, pp.38-41, 2011.

H. Huang, Z. Chen, R. P. Ortiz, C. Newman, H. Usta et al., Combining Electron-Neutral Building Blocks with Intramolecular"conformational Locks" Affords Stable, High-Mobility P-and N-Channel Polymer Semiconductors, J. Am. Chem. Soc, vol.134, pp.10966-10973, 2012.

J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao et al., Silole Copolymer with a Power Conversion Efficiency of 7.3%, J. Am. Chem. Soc, vol.3, pp.4250-4253, 2011.

C. Cabanetos, A. E. Labban, J. A. Bartelt, J. D. Douglas, and R. William,

J. M. Mateker, M. D. Fre?chet, and P. M. Mcgehee, Linear Side Chains in Benzo[1,2-b:4,5-B?]Dithiophene-Thieno[3,4-c] Pyrrole-4,6-Dione Polymers Direct Self-Assembly and Solar Cell Performance, J. Am. Chem. Soc, vol.135, pp.4656-4659, 2013.

Y. Zou, A. Najari, P. Berrouard, S. Beaupre, Y. Badrou-reda-a?ch et al., Pyrrole-4, 6-Dione-Based Copolymer for Efficient Solar Cells, J. Am. Chem. Soc, vol.132, pp.5330-5331, 2010.

X. Guo, R. P. Ortiz, Y. Zheng, M. Kim, S. Zhang et al., Pyrrole-4,6-Dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic ThinFilm Transistors, J. Am. Chem. Soc, vol.133, pp.13685-13697, 2011.

A. Najari, S. Beaupré, P. Berrouard, Y. Zou, J. Pouliot et al., Synthesis and Characterization of New Thieno[3,4-c]Pyrrole-4,6-Dione Derivatives for Photovoltaic Applications, Adv. Funct. Mater, vol.21, pp.718-728, 2011.

E. Zhu, B. Ni, B. Zhao, J. Hai, L. Bian et al., Synthesis and Photovoltaic Characterization of Dithieno[3,2-b:2?,3?-d]Thiophene-Derived Narrow-Bandgap Polymers, Macromol. Chem. Phys, pp.227-234, 2014.

X. Liu, F. Kong, F. Guo, T. Cheng, W. Chen et al.,

S. D. Tan, Influence of ?-Linker on Triphenylamine-Based Hole Transporting Materials in Perovskite Solar Cells, Dye. Pigment, vol.139, pp.129-135, 2016.

S. Paek, I. Zimmermann, P. Gao, P. Gratia, K. Rakstys et al., Donor-?-donor Type Hole Transporting Materials: Marked ?-Bridge Effects on Optoelectronic Properties, Solid-State Structure, and Perovskite Solar Cell Efficiency, Chem. Sci, vol.7, pp.6068-6075, 2016.

P. Kamat and J. A. Christians, Role of Hole Conductors in Quantum Dot and Organometal Perovskite Based Solid State Solar Cells, ECS Meeting Abstracts, p.1282, 2014.

Y. Hou, Z. R. Zhou, T. Wen, H. Qiao, Z. Q. Lin et al., Enhanced Moisture Stability of Metal Halide Perovskite Solar Cells Based on Sulfur-Oleylamine Surface Modification, Nanoscale Horizons, 2018.

Y. J. Kim and C. E. Park, Following the Nanostructural Molecular Orientation Guidelines for Sulfur: Versus Thiophene Units in Small Molecule Photovoltaic Cells, Nanoscale, vol.8, pp.7654-7662, 2016.

R. Nie, A. Mehta, B. W. Park, H. W. Kwon, J. Im et al., Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells, J. Am. Chem. Soc, vol.140, pp.872-875, 2018.

N. K. Noel, A. Abate, S. D. Stranks, E. Parrott, V. Burlakov et al., Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic-Inorganic Lead Halide Perovskites, ACS Nano, vol.8, pp.9815-9821, 2014.

D. Lumpi, B. Holzer, J. Bintinger, E. Horkel, S. Waid et al.,

M. Wanzenbock, D. Marchetti-deschmann, E. Christian-hametner, I. K. Bertagnolli, and J. F. , Substituted Triphenylamines as Building Blocks for Star Shaped Organic Electronic Materials, New J. Chem, vol.39, pp.1840-1851, 2015.

G. Koeckelberghs, W. Vanormelingen, W. Dehaen, T. Verbiest, A. Samyna et al., Tetrahedron, vol.61, pp.687-691, 2005.

M. H. Kwan-wook-song, J. Choi, and D. K. Yong-lee, Opto-Electrical and Density Functional Theory Analysis of Poly(2,7-Carbazole-Alt-Thieno[3,4-c]Pyrrole-4,6-Dione) and Photovoltaic Behaviors of Bulk Heterojunction Structure, J. Ind. Eng. Chem, vol.20, pp.290-296, 2014.

J. Duan, L. H. Zhang, and W. R. Dolbier, A Convenient New Method for the Bromination of Deactivated Aromatic Compounds, Synlett, pp.1245-1246, 1999.

R. E. Banks, Organofluorlne Chemistry: Principles and Commercial Applications, 1994.

C. Rücker, The Triisopropylsilyl Group in Organic Chemistry: Just a Protective Group, or More?, Chem. Rev, vol.95, pp.1009-1064, 1995.

M. Planells, A. Abate, D. J. Hollman, S. D. Stranks, V. Bharti et al., Diacetylene Bridged Triphenylamines as Hole Transport Materials for Solid State Dye Sensitized Solar Cells, J. Mater. Chem. A, issue.1, pp.6949-6960, 2013.

S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao et al.,

S. A. Muhtaseb, Dopant-Free Hole-Transporting Materials for Stable and Efficient Perovskite Solar Cells, Adv. Mater, vol.1606555, pp.1-7, 2017.

V. Govindan, K. C. Yang, Y. S. Fu, and C. G. Wu, Low-Cost Synthesis of Heterocyclic Spiro-Type Hole Transporting Materials for Perovskite Solar Cell Applications, New J. Chem, vol.42, pp.7332-7339, 2018.

X. Guo, N. Zhou, S. J. Lou, J. W. Hennek, M. R. Butler et al., Bithiopheneimide ? Dithienosilole/Dithienogermole Copolymers for E Ffi Cient Solar Cells: Information from Structure ? Property ? Device Performance Correlations and Comparison to Thieno[3,4 -c ]Pyrrole-4,6-Dione Analogues, J Am Chem Soc, vol.134, pp.18427-18439, 2012.

U. Salzner and A. Aydin, Improved Prediction of Properties of ?-Conjugated Oligomers with RangeSeparated Hybrid Density Functionals, J. Chem. Theory Comput, vol.7, pp.2568-2583, 2011.

J. Liu, R. Zhang, G. Sauvé, T. Kowalewski, and R. D. Mccullough, Highly Disordered Polymer Field Effect Transistors: N-Alkyl Dithieno[3,2-b:2?,3?-d]Pyrrole-Based Copolymers with Surprisingly High Charge Carrier Mobilities, J. Am. Chem. Soc, vol.130, pp.13167-13176, 2008.

A. Saeki, S. Yoshikawa, M. Tsuji, and Y. Koizumi,

S. S. Vijayakumar, A Versatile Approach to Organic Photovoltaics Evaluation Using White Light Pulse and Microwave Conductivity, J. Am. Chem. Soc, vol.134, pp.19035-19042, 2012.

, 2 with anisotropic displacement parameters for all non-hydrogen atoms

, Solar cell device fabrication in Japan: PSCs were fabricated on FTO-coated glass with the sheet resistance of FTO approximately 7 ? cm -2 . Initially, FTO electrodes were patterned by etching FTO with 2 M HCl and zinc powder. Substrates were then cleaned sequentially in detergent, water, ethanol and acetone. After UV-induced ozone treatment, for 30 min. A 300-nm thick mesoporous TiO 2 (DSL 18NR-T, DYESOL) film was spin

, After transferring the films to a N 2 -filled glove box, the perovskite layers were then deposited by spin-coating a mixed precursor solution of methylammonium iodide and lead Iodide (1:1 molar ratio, final concentrations 1.1 M lead Iodide and 1.1 M methylammonium iodide) in dimethylsulphoxide (DMSO) at speed of 1000 r

. Sequence, 6-TPA HTM in chlorobenzene at solid concentration of 37.3 mg/mL was spin-cast onto CH 3 NH 3 PbI 3 perovskite layer speed of 3000 r.p.m. for 30s. To improve the charge carrier mobility of HTM layers as well the photovoltaic performance of PSCs, the HTM solutions were added 24 ?L of 4-tert-butylpyridine (96%, Sigma-Aldrich), 14 ?L lithium bis (trifluoromethanesulfonyl)imide (LiTFSI, Tokyo chemical industry) solution (516.7 mg LI-TSFI in 1 ml acetonitrile, 99, vol.8

, Substrates were then cleaned sequentially in detergent, water, ethanol and acetone. After UV-induced ozone treatment, a compact layer of TiO 2 (around 50 nm in thickness) was deposited by spin coating a solution of 100 ?L titanium diisopropoxide bis(acetylacetonate) (Sigma-Aldrich) in 1.27 mL of 1-butanol at speed of 2800 r.p.m. for 25s and annealed at 125 ºC for 5 min, cobalt(III) bis(trifluoromethylsulphonyl)imide (FK209, Luminescence Technology Corp.) solution (3751)

, In ambient temperature, the perovskite layers were then deposited by spin-coating a mixed precursor solution of MAI and PbI 2 (1:1 molar ratio) in DMSO and DMF at speed of 4000 r.p.m. for 25s. After 10s spinning, r.p.m. for 20s and annealed at 125 ºC for 5 min, then calcinated at 500 ºC for 60 min in air to remove organic components, vol.8